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ABSTRACT

Planning with world models offers a powerful paradigm for robotic control. Con-
ventional approaches train a model to predict future frames conditioned on current
frames and actions, which can then be used for planning. However, the objective
of predicting future pixels is often at odds with the actual planning objective;
strong pixel reconstruction does not always correlate with good planning deci-
sions. This paper posits that instead of reconstructing future frames as pixels,
world models only need to predict task-relevant semantic information about the
future. For such prediction the paper poses world modeling as a visual ques-
tion answering problem about semantic information in future frames. This per-
spective allows world modeling to be approached with the same tools underlying
vision language models. Thus vision language models can be trained as “seman-
tic” world models through a supervised finetuning process on image-action-text
data, enabling planning for decision-making while inheriting many of the gener-
alization and robustness properties from the pretrained vision-language models.
The paper demonstrates how such a semantic world model can be used for policy
improvement on open-ended robotics tasks, leading to significant generalization
improvements over typical paradigms of reconstruction-based action-conditional
world modeling.

https://weirdlabuw.github.io/swm

1 INTRODUCTION

World models are a class of learning methods capable of absorbing large amounts of data to make
generative predictions about future outcomes in the world. These predictions can then be used to
inform decision-making via planning (Williams et al., 2016; |Hafner et al.,2019; Rybkin et al., 2021}
Hansen et al., 2022), helping policies acquire generalizable and robust behaviors. The practical in-
stantiations of world models are diverse, ranging from smaller state-based dynamics models (Ai
et al.,2025) to large action-conditioned video prediction models (Ball et al.,|2025). Across these in-
stantiations, pixel-level reconstruction of future observations is commonly used as a training recipe.
While these approaches are often successful at generating realistic images, as evident from high-
quality video generations, they can be challenging to use for planning. Despite the visual fidelity,
these predictions often miss (or misrepresent) key semantic details necessary for decision making,
e.g., the details of precise dexterous contact. While there have been suggestions for modeling “task-
relevant” latent representations (Zhang et al., 2021; [Hansen et al., 2022; Zhu et al.l 2023), these
methods often impose additional assumptions on the availability of rewards (Hansen et al., 2024])) or
known factors (Locatello et al.| 2020), making them challenging to use in practice across a variety
of world modeling problems.

If pixels are not necessary for planning, what is actually needed to make decisions about acting in
the world? This paper posits that the ability to predict semantic information about future outcomes
is sufficient. Rather than forecasting raw visual frames, world models should capture task-relevant
information about objects and their interactions, e.g., “Did the arm get closer to the object?”, “Did
the red cube tip over?”, “Was the blue moon picked up?”’. This work frames such information as
a visual question-answering (VQA) problem about the future, leveraging the fact that any desired
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Figure 1: Comparison between Vision-Language Models, Video World Models, and Semantic World Models.
While Vision-Language Models answer questions about static observations and Video World Models predict
future observations given actions, Semantic World Models take observations and actions as input to directly
answer questions about the future outcomes of those actions.

outcome can be expressed as a set of yes/no questionﬂ That is, the problem of world modeling can
be redefined as a VQA problem about outcomes in the future.

There already exists a class of models with extensive tooling for VQA on static observations, i.e.,
vision-language models (VLMs). For world modeling, VLMs offer two key advantages: they pro-
vide a strong foundation for VQA through large-scale pretraining and broad generalization, and
they encode prior knowledge about which tasks and semantic features are relevant in a scene. These
strengths make frontier VLMs well suited to formulating task-relevant questions and producing reli-
able answers when given static observations. However, their lack of predictive capacity about future
outcomes limits their direct utility for decision-making.

This work introduces the paradigm of Semantic World Model (SWM) — a generalizable world model
that is represented as an action-conditional vision-language model that answers questions about
the semantic effects of actions in the future. Unlike traditional world models that predict future
frames, a Semantic World Model answers questions about the future given current observations
(represented as an image) and a sequence of actions. As shown in Fig. [T} the model takes as
input the current observations, a proposed action sequence, and a natural language query about the
future. It then generates a textual answer by understanding the consequences of taking the actions
in the environment. Since SWM is fundamentally a task-agnostic world model, it can be trained on
general sequential data with minimal quality assumptions, including both play and suboptimal data.
The training data can be easily obtained from any (expert or non-expert) data corpus in the format
of current observations, actions, questions (about the future), and expected answers.

The ability to reason about outcomes in the future with an SWM enables flexible open-world multi-
task planning in action space: given a task specification in natural language, one could either lever-
age a pre-trained VLM (OpenAl 2024} [Beyer et al.,|2024) or manually decompose the task specifi-
cation into a set of questions and expected answers in text form. Given this QA set, SWM can then
be used to plan actions that elicit the expected answers to these questions in the future with high like-
lihood. While a plethora of techniques can be used for this planning, this work shows compatibility
with both zero-order sampling-based methods (Rubinstein & Kroese, [2004; |Williams et al.| [2016))
and first-order gradient planning methods (Ruder, 2017 Rybkin et al.}[2021)) that perform optimiza-
tion with respect to the expected likelihood objective. It shows that these planning methods can be
computationally tractable, enabling a significant test-time improvement over nominal action selec-
tion methods. Moreover, it demonstrates the extensibility of such planning methods to multi-step
long-horizon problems.

SWM is empirically evaluated on a suite of multiple different tasks in two commonly used multi-task
simulation domains — Language Table (LangTable) (Lynch et al.,[2022) and OGBench (Park et al.,
2025). This evaluation shows that (1) SWM can accurately answer questions about future outcomes
while generalizing to novel scenes, and (2) SWM can be combined with standard sampling-based
planning techniques and a gradient-based improvement technique to solve diverse robotics tasks
with considerable policy improvement through test-time optimization. SWM introduces a new class

!other textual question-answer types may be applicable as well



of world models that leverage the rich pretraining knowledge from VLMs for grounded, flexible,
and scalable robotic control.

2 RELATED WORK

Vision-Language Models (VLMs) broadly encompass representation learning methods and mul-
timodal generative models trained on vision and language data. Representation learning methods
jointly train a vision encoder and a text encoder by aligning their encoded representations. These
representations can then be utilized in various applications, such as classification, retrieval, and
control. CLIP (Radford et al.,|2021) learns such representations from image-text data by utilizing
a contrastive loss, contrasting positive image-text pairs with negative pairs. SigLIP (Zhai et al.
2023)) replaces the contrastive loss with a pairwise sigmoid loss to facilitate scalable training. Multi-
modal generative models, commonly known as VLMs, enable a broad range of promptable behaviors
such as understanding, summarizing, and question answering (OpenAlL [2024; |Gemini Team, |2023;
Deitke et al., 2024; [Bai et al., 2023} [Beyer et al.| 2024} Touvron et al.| [2023). A VLM takes in an
image and a language prompt as input and generates a natural language response. They are typically
trained with a next-token prediction objective. Recently, a family of vision-language-action models
(VLAs) has been introduced to bring the vision-language understanding capabilities of VLMs to
embodied decision-making (Brohan et al.| [2023} |Kim et al., 2025} |Black et al.| [2024). VLAs are
trained on annotated robot trajectories to generate actions conditioned on image observations and
language instructions. OpenVLA (Kim et al., 2025) directly predicts discrete action tokens, while
Pi-0 (Black et al.,[2024) decodes actions via a diffusion action head. Unlike VLAs, an SWM takes
in observations, actions, and a natural language prompt as input, and generates a natural language
response about the future after taking the actions. In some sense, an SWM can be viewed as an
“inverted” VLA, where the actions become the input and the language becomes the output. This
approach hypothesizes that using language as the output format can better retain the pretraining
knowledge of VLMs, since they were trained with next token prediction objectives.

World Models for Control are approximate models of the dynamics of the world, typically
trained to predict future observations conditioned on current observations and actions. The abil-
ity to forecast the future without interacting with the world can greatly facilitate decision-making
and control. A prominent line of work focuses on planning with world models. (Chua et al., 2018;
Hafner et al.,|2019;Rybkin et al.,2021). PETS (Chua et al., 2018)) learns a one-step dynamics model
and applies the cross-entropy method to plan for optimal actions for a given reward. PlaNet (Hafner
et al., 2019) learns a recurrent latent dynamics model with a reconstruction objective and applies
planning in the latent space. LatCo (Rybkin et al., |2021)) leverages collocation-based planning to
enable long-horizon planning with latent dynamics models. Another line of work utilizes world
models as a simulator for reinforcement learning (Hafner et al.| [2020; [Zhang et al., |2021; Hansen
et al., [2022). Dreamer (Hafner et al., 2020) and TD-MPC (Hansen et al., 2022) use a latent dy-
namics model to generate rollouts for actor-critic policy optimization, achieving remarkable sample
efficiency. (Zhang et al.| [2021) learns a latent representation predictive of dynamics and reward,
which can then be used as an invariant representation for RL policies. Recently, world models have
been used together with imitation learning methods to facilitate out-of-distribution generalization
(Du et al., [2023; Zhu et al.| 2025)). UniPi (Du et al}|2023) uses a world model as a high-level plan-
ner to condition low-level policies. UWM (Zhu et al.,|2025) trains a unified video-action diffusion
model, incorporating video data into pretraining to improve generalization. Unlike these explicit
world models, SWM understands the dynamics of the world by reasoning in language space, allow-
ing the model to bootstrap from the Internet-scale pretraining of VLMs. SWM can then be used
with planning techniques to derive versatile language-conditioned policies.

3  SEMANTIC WORLD MODELS: WORLD MODELING AS VQA

This section presents details of the data generation pipeline, the SWM architecture, and the training
methodology. It then touches on the sampling-based and gradient-based planning methods used for
policy extraction under SWM. Fig. [2| provides an overview of the model and planning procedure.
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Figure 2: Overview of Semantic World Models. SWM is a VLM adapted to answer questions about the
future realized by the actions used to condition the model. Using a set of questions and desired answers, its
predictions can be converted into a planning signal and iteratively refine the action sequence.

3.1 DATASET GENERATION

To train a world model to answer questions about the future, a state-action-question-answer (SAQA)
dataset is generated. It is defined as

Dsaa = {(Si, aij, Qs;, As; ), .-} where j =i+ h

where S; represents the current state (RGB frame in our case),  is the horizon, a;.; is a sequence of
actions taken from state S;, and Qs;, As, is a question answer tuple about the future state S; which
is reached by taking actions a;.; from state S;. Fig. |§| illustrates a single state paired with multlple
questions and answers in the dataset.

The SAQA dataset is generated from a dataset
of trajectories {717,T%»,...}, where each trajec-
tory is given by a sequence of state-action tuples i
{(So,a0), (S1,a1),...}. Here, each state comprises
an image observation and privileged information,
such as object positions, which are used for pro-
grammatic question generation. For each state S;
in the trajectory, multiple different action horizons
h are sampled. As shown in Fig. [3] for each sam-
pled horizon h, the oracle information from future
state S;.p, is used to create a set of questions and
answers, which gives the final dataset to train the
model. For each type of question generation, mul-
tiple phrasings are included in the training dataset. Rjgure 3: Example state entry in the SAQA

Examples of training question types and reward for  dataset with two action horizons and six QA pairs.
each task are provided in the Appendix[A.3.2]

action sequence 1: [a,, a,, ..., a]

seq,
Q1: Is the green cube closer to the blue moon? yes yes
Q2: Is the green cube in the top right? no yes

Q2: Is the green cube left of the blue cube? yes no

3.2 SEMANTIC WORLD MODELS ARCHITECTURE

This section presents a model capable of answering questions about future events conditioned on
actions. A model with such capability is fundamentally a visual question-answering model with
action conditioning. Therefore, it is natural to bootstrap from large pretrained VLMs to transfer
their generalization capabilities to robotics tasks. This SWM architecture is based on an open-source
VLM, PaliGemma (Beyer et al.,[2024).

The model contains three core pretrained components: a transformer-based autoregressive language
model with a token embedding size do, a vision encoder v4 with a feature size djng, and a projection
matrix W € R%*dm  The PaliGemma architecture is built on top of two individually trained



components: the Gemma LLM (Gemma Team et al.,|2024) and the SigL.IP image encoder V. (Zhai
et al.,[2023). W is used to project from Z. to Zym, Where Z is the feature space of vy, and Zypm
1s the input token embedding space of the LLM. This paper uses the 3B parameter checkpoint from
PaliGemma as the base model. This architecture and components are described in Appendix [A.1]

To adapt the base model to answer questions about a specific future as a result of the actions, the
model needs to be conditioned on these actions. Thus a new projection matrix P € R%ox* %« jg ysed
which projects a single action a € R%« into the latent space Zr ;s similar to the W projection
matrix. Given a tuple (5;, a;.;, @s;, As;) from the dataset Dsaqa, the input sequence is constructed
by concatenating the image embeddings, action embeddings, and question token embeddings as
concat (W' Ve(S;), P a;, P ai1,...,P a;,Qg,) . The model is then fine-tuned in an end-
to-end manner to predict the target answer Ag; by optimizing the standard cross-entropy loss

£ = —logp(As,|Si, aij, @s;)-

This training procedure enables the model to capture the dynamics of the environment in language
space to answer questions about future states without explicitly generating pixel-level representa-
tions.

3.3 PLANNING WITH SEMANTIC WORLD MODELS

Planning with world models requires evaluating the value of action sequences. For each task, a
set of questions (e.g., “is the gripper touching the block™) and desired answers (e.g., “yes”) can be
defined. A scalar score is then derived by combining the likelihood of the model generating the
desired answer for each question, weighted by some heuristic weights. Specifically, each task is
defined as a set of questions, answers, and weights 7 := {(Q;, A, W;)}£_,. Given an observation
S and a sequence of actions ay.,,, its value under the task is calculated as:

k
T(Sa al:n) = ZWZ 'pwm(Az‘SaalﬁuQi) (1)

=0

Empirical evaluation shows that rewarding the model for achieving the desired outcome earlier in
the action sequence leads to better performance. This early reward is provided by breaking each full
action sequence down to sub-chunks of length ¢, and then querying the model on action sequences

with increasing numbers of concatenated sub-chunks:
k

VTe(S,arm) = Y Y Wi pum(Af1S, a15, Qi) @
i=0 j=c
Jt=c

Setting ¢ = 1 is equivalent to evaluating the model once for every single action in the sequence, and
setting ¢ = k is equivalent to the vanilla formulation in Eqn. [2| Various planning techniques can be
used to extract optimal actions by using the model with a well-defined value function.

3.3.1 SAMPLING-BASED PLANNING

Sampling-based planning provides a straightforward approach to planning with the model. An ex-
ample is Model Predictive Path Integral (MPPI) control algorithm [Williams et al.| (2016), which
maintains a Gaussian distribution of action parameters and iteratively refines it by querying the
model. The action distribution is initialized as a(®) ~ Unif(@min, @max)- At each iteration, a set of
K control sequences {a(*)}/ | is sampled from the current action distribution. The value of each
of these sampled trajectories V}, is computed using our SWM. The distribution for the next iteration
isa; 11 ~ N (g, o) where

K oxp (% . K . )
Z a® o2 = w a® — 3)
Z eXp(V> k=1

and ) is a temperature parameter that controls exploration.
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Figure 4: Examples of each evaluation task. The top frame represents the initialization, and the bottom frame
represents task completion. The first three tasks are for LangTable and the last two are for OGBench.

3.3.2 GRADIENT-BASED PLANNING

For more complicated tasks, sampling-based planning methods typically require a large number
of samples and optimization iterations, which become increasingly hard to scale for a large model
like SWM. To reduce the number of samples and model forward passes, we propose a gradient-
based optimization procedure together with a base proposal policy. The gradient provides directed
information for optimizing the model, thus converging faster than sampling-based techniques. The
base proposal policy can effectively trim down the planning search space. Given a base policy 7, a
control sequence a ~ m,(.5), and the semantic world model py,,, gradient ascent is used to optimize
the following objective:

JT(a) = V7T¢(S,a) “4)

Where a is the control sequence being optimized, 7 = {(Q;, A¥, W;)}¥_, is the list of questions,

desired answers, and weights, ¢ is the reward subchunk size, and S is our state. To improve stability
during learning, gradient norm clipping is used before each step. Refer to Appendix [A5.2] for a
visualization of this optimization process and Appendix [A.5.3|to compare the computational speed
of planning times for each method.

3.4 MULTISTEP TASKS

To solve long-horizon tasks, the aforementioned planning procedure can be extended to a multi-
step formulation. The capabilities of SWM’ can be used to track task progress and transition
between subgoals without requiring any additional components. A series of sequential subgoals
g1, 92, - - ., gr 1s defined where each subgoal g; is associated with a question and a desired answer
corresponding to when the subgoal was completed. Each subgoal is executed sequentially and its
completion is verified using SWM. This verification is feasible at no additional cost because zero-
horizon examples are included in the training dataset. For example, in the block picking task, the
following sub-goals are used: [’Is the block grasped?”, Is the block stacked on top of the other
block?”’], with the desired answers [’yes”, ’yes”] in order to accomplish a two-stage task. This
method is used to extend planning to multi-step LangTable tasks.

4 EXPERIMENTS AND RESULTS
4.1 EXPERIMENTAL SETUP

SWM is evaluated in two simulation environments, LangTable (Lynch et al.,|2022) and OGBench
(Park et al.,[2025)), capturing combinatorial generalization and dexterous manipulation. Fig. @]shows
examples of tasks in each domain. This section provides an overview of the experiment setup and
details are provided in Sec.[A.2]

LangTable (Lynch et al.l|2022) SWM is evaluated on reaching, separating blocks, and pushing in
the LangTable environment, using both sampling-based planning and gradient-based improvement
over a base policy. SWM is trained on a mixture of expert data collected with a scripted policy and
suboptimal data collected with a random policy. To evaluate in out-of-distribution conditions, the
block color combinations are changed during evaluation to test compositional generalization. For
example, our training data only includes the red pentagon, and evaluation is performed with a green
pentagon and a novel purple pentagon.
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Figure 5: Policy Improvement across LangTable and OGBench across multiple tasks. The average success
rates of the base policies (14.4% on LangTable and 45.33% on OGBench) increase to 81.6% and 76.0%,
respectively. SWM further outperforms the IDQL and AVD baselines across all evaluated tasks and environ-
ments. Reported success rates over n = 50 seeds with 95% confidence intervals (normal approximation).

OGBench (Park etall In OGBench SWM is evaluated on cube reaching and a custom cube
stacking task. It is trained on a mixture of optimal and suboptimal data, collected using the provided
noisy expert data and play data from OGBench, respectively. Background color is changed during
evaluation to measure generalization.

For both environments, a per-task Diffusion Policy (Chi et al.,|2023) is trained on 300 expert tra-
jectories for 100 epochs as the base policy. The expert trajectories were collected using the same
experts as in the offline dataset.

During training, the dataset was balanced in both the number of each possible question type and
the answer distribution for each respective question. For example, for each state in the LangTable
environment, there are (g) possible questions about whether two blocks are touching, but 8 questions
about whether the end effector is touching a given block. Similarly, most blocks are separated in
the initial states of the LangTable environment, leading to far more ’yes’ answers than 'no’ answers.
The imbalance is addressed during training by oversampling tuples such that there is a balanced
amount of question types and answer distributions.

4.2 BASELINES

Semantic World Models is compared to the following baselines. Details about each baseline and
hyperparameters are described in Sec.

IDQL (Hansen-Estruch et all 2023): IDQL is an offline RL baseline which uses IQL
(2022) to reweight the a behavior diffusion policy. For each task, the offline dataset used for
Semantic World Model is combined with the per-task expert dataset used for the base policy. This
combined dataset is labeled with binary rewards and used to train the IDQL policy. The architecture
and hyperparameters of the diffusion policy used as the IDQL behavior policy are the same as for
the base policies, except with a horizon of 8.

Action Conditioned Video Diffusion (AVD): To compare against a pixel-based world model, an
action-conditioned k-step video diffusion model is trained. Its architecture is modeled after the
backbone used in Unified World Models 2025). Using this video diffusion model, the
future frame conditioned on the proposed action sequence is predicted and the SWM model is used
to perform VQA on this predicted frame, which is then used as a reward for MPPI planning. The
initial trajectory candidate samples are generated through the base diffusion policy.



Task  Base Policy AVD SWM (Ours)

MSI1 6% £66 8%+t75 50% +13.9
MS2 4% +54 2% +39 66% £ 13.1
MS3 4% +t54 2% +39 54% +£13.8
MS4 2% £39 4% +t54 54% £ 13.8

Table 1: Multi-Step Results. SWM model improvement results on four different multi-step compositional
tasks. The tasks are as follows: MS1 - red pentagon to blue moon, yellow pentagon to red moon. MS2 - yellow
star to blue cube, yellow pentagon to red moon. MS3 - yellow star to blue cube, red pentagon to blue moon.
MS4 - green cube to blue moon, yellow pentagon to red moon. Reported success rates over n = 50 seeds with
95% confidence intervals (normal approximation).

4.3 RESULTS

The evaluation aims to address the following questions: (1) Is SWM an effective world model
for decision making? (2) Does suboptimal data improve modeling performance? (3) Does SWM
preserve the generalization capabilities from the base VLM?

Is SWM an effective world model for decision making? Task SWM
The planning capabilities of SWM is evaluated first by ap- LT Reach Block 100%
plying a sampling-based planning method, MPPI, to a SWM LT Separate Blocks  100%
model on LangTable and OGBench tasks. As shown in

Tab. [2] it is possible to directly plan on top of the semantic OG Reach Cube 97%
world model using sampling-based planning methods, achiev-
ing close to perfect success rates on reaching and block sepa- Table 2:  Planning Results MPPI
ration tasks across both environments. planning success rates over 100 seeds.

However, the computational cost of the sampling-based planning method with large models makes it
infeasible to run MPPI on more challenging tasks requiring a higher number of samples. Therefore,
for more complicated tasks, consider a scenario in which a base policy generates a candidate trajec-
tory that is refined using SWM and gradient-based optimization (described in Sec.[3.3.2). As shown
in Fig. 5] the method is able to refine candidate trajectories and show substantial improvement over
the base policies. SWM demonstrates an average performance increase over the base policies from
14.4% to 81.6% on average for LangTable and 45.33% to 76% on average for OGBench. SWM also
outperforms both the AVD and IDQL baselines across all tasks, demonstrating the effectiveness of
SWM for planning.

SWM also demonstrates the capability for longer horizon tasks by both selecting subgoals and then
planning using that specific subgoal. SWM demonstrates an average policy improvement of 52.0%
as shown in Tab. [T]on multistep tasks, outperforming the AVD baseline. For both AVD and SWM,
subgoal completion was determined using the SWM model without action conditioning.

Does suboptimal data improve modeling performance? One of the key aspects of a world
model is its ability to learn from suboptimal data. To measure the effects of suboptimal demonstra-
tions, a test set of future QA data collected from expert demonstrations in both the in-distribution and
out-of-distribution environments is created. The models are then trained on three different seeds and
fix hyperparameters to convergence with suboptimal data, optimal data, or a 50/50 mixed dataset.
As seen in Table [3] mixing in the suboptimal data improves accuracy over training on just expert
data. SWM is also able to achieve moderate levels of performance by training only on suboptimal
data, demonstrating how effective suboptimal data can be for training our world model.

LangTable OGBench
Dataset Type Expert Data  Expert Data OOD  Expert Data  Expert Data OOD
Sub Optimal 85.98 £ 0.33 81.99 + 1.46 90.83 £ 0.39 85.56 £ 1.10
Expert 91.27+0.79 86.49 + 0.39 96.53 +0.13 87.33 £2.13
Combined 92.92 +0.34 88.32 +2.10 96.86 +0.13 88.16 + 1.54

Table 3: Future QA Performance. Accuracy of answers on future QA evaluated on expert SAQA datasets
generated by experts on test time seeds in both in-domain and out-of-domain block combinations. Reported
standard deviation across 3 model training seeds.
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Figure 6: Out-of-distribution configurations for the evaluation tasks. LangTable is configured to have OOD
block/color combinations. OGBench is configured to have a different color background.

Task Base Policy AVD SWM (Ours)
Push Blue Star to Red Cube 54% +13.8 66% 4+ 13.1 86% + 9.6
Push Yellow Moon to Purple Cube 54% +13.8 56% 4+ 13.8 78% + 11.5

Stack Red to Green OOD Background 62% + 135 28% £ 124 72% + 124
Stack Blue to Yellow OOD Background 50% £ 13.9 50% £ 13.9 70% + 12.7

Table 4: Out-of-Distribution Improvement Results. SWM model improvement results on tasks in
LangTable and OGBench on out-of-distribution scenes. SWM is able to show policy improvement and out-
perform AVD across both environments. Reported success rates over n = 50 seeds with 95% confidence
intervals (normal approximation).

Does training preserve the generalization capabilities from the base VLM? To measure the
effects of VLM pretraining on generalization, SWM is evaluated on compositional and scene out-
of-distribution environments, depicted in Fig. [] Since the offline dataset was misaligned with these
evaluation tasks, the IDQL baseline is not evaluated.

To measure semantic compositional generalization, a new colored block is introduced and the exist-
ing block color-shape pairs are modified in the LangTable environment. Tab. ] shows an average of
20.0% improvement over the base policies under these conditions. This performance indicates that
SWM is able to retain some of the pretraining knowledge, resulting in compositional generalization.

To test robustness to background changes, OGBench’s background color is changed to a novel com-
bination. SWM is again able to demonstrate a 20% boost in performance compared to the base
policy and is able to generalize to these conditions, while the AVD method is unable to.

Does the model’s internal representations attend to the task-relevant information? To under-
stand the learned representations of the model, the attention maps from the language tokens to the
image patches are visualized from an intermediate layer of the model. As shown in Fig. [7] the model
correctly attends to the task-relevant location in the image depending on the language prompt. For
example, when asked ”Is the red moon touching the blue cube?”, the attention score is higher on the
image patches corresponding to the objects. Although never finetuned on questions with more than
two objects, the model was found to correctly attend to three objects when asked to. This shows that
the model inherits generalization from the pretrained VLM. In Appendix [A.5.1| more visualizations
of individual layers as well as entire trajectories are provided.

Is the green cube Is the peg Is the yellow star
touching the yellow touching the blue between the green cube
pentagon? cube? and the blue moon?

Figure 7: Visualization of the attention map from language tokens to image patches in the 4th
transformer layer. The language tokens correctly attend to the task-relevant locations in the image
depending on the prompt.



5 CONCLUSIONS

This paper presents Semantic World Models, a novel world modeling approach that explicitly mod-
els future outcomes through future QA without needing to reconstruct or use pixel-level information
as a training objective. It shows that this approach can be used with both sampling-based planning
and gradient-based policy improvement. Empirical evaluation demonstrates considerable gains over
pixel-based world modeling and offline RL methods, suggesting SWM could be the basis of a new
framework for world modeling.

While Semantic World Models demonstrate strong performance on multiple tasks, several limita-
tions remain. First, the high parameter count of the base VLM makes sample-based planning meth-
ods too computationally expensive to perform on a single GPU or at a reasonable control frequency.
The gradient-based planning method is significantly more efficient, but requires a base policy to
propose the initial trajectory. Second, it also requires ground truth simulation information in order
to construct the SAQA dataset, which would be hard to get in real-world robotic environments.

These limitations suggest some promising future directions to address these challenges. Instead of
using PaliGemma as the base VLM, there is recent work towards training smaller VLMs, such as
FastVLM or SmolVLM (Marafioti et al., 2025} |[Kumar et al., [2025). These smaller VLMs could
enable sampling-based planning to scale up to more challenging tasks, thereby eliminating the need
for a base policy. Another promising direction could be to replace the oracle-generated QA pairs
with those directly derived from a base VLM model. This would enable scaling up both the diversity
of data and the ability to include real data in the training recipe of a Semantic World Model.

REPRODUCIBILITY

To promote reproducibility and facilitate building upon this work, we will release code and trained
model weights to enable independent reproduction of our results. All of our reported results were
obtained across multiple seeds, and we included multiple different goal configurations of each task
to ensure reproducibility of our findings.
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A APPENDIX

A.1 MODEL ARCHITECTURE AND TRAINING DETAILS
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Figure 8: Architecture of Semantic World Model

Fig. [§|shows the architecture of Semantic World Model. We use the Paligemma 3B checkpoint as our
base model. The only new component we introduce is a linear projection matrix that is dimension
act_dimx 2048 where 2048 is the embed dimension of the Gemma model. We perform full weight
fine-tuning on all model parameters using a linear LR decay starting at 1e~ for approximately
24,000 gradient steps on LangTable and 64, 000 gradient steps for OGBench. We use an effective
batch size of 96. Each model is trained on a node comprising 4 AMD Instinct MI250X GPUs (each
equipped with 2 MI200 GPU accelerators), resulting in a total training time of approximately 24
hours.

A.2 BASELINES AND HYPERPARAMETERS

IDQL (Hansen-Estruch et al. [2023) is an offline RL method that applies implicit Q-learning to
reweight a behavior diffusion-based policy. We use the base diffusion policy architecture for SWM
as the policy for IDQL, except with an action horizon of 8§ instead of 16. For the Q and Value
functions in IDQL, we only condition on the current observation.

For the AVD baseline, we train a latent action-conditioned transformer video diffusion model, based
on the architecture of Unified World Models (Zhu et al., 2025)), without the action prediction head.
Due to the computational cost of running the AVD forward and then using the generated frame for
VQA, we are unable to run this baseline with a high number of samples. Since the MPPI initial
samples were initialized from the base policy, we perform 10 iterations of MPPI with 16 samples to
get our final action prediction. Each AVD run takes around 10 hours on a single GPU.

The hyperparameters used for the base diffusion model, the IDQL algorithm, and the AVD model
are detailed in Tab. [5] The only difference across environments is the size of the input image. All
models are trained with the AdamW optimizer (Loshchilov & Hutter, 2019).
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Table 5: Hyperparameters for IDQL, Diffusion, and AVD Model

Diffusion
Batch size 128
Epochs 100
Action horizon 16
Observation horizon 2
Diffusion iters 100
Eval diffusion iters 10
Traj end padding (steps) 12
IDQL
Gradient steps 250,000
Batch size 128
IQL 7 0.8
Test time samples 1000
Temperature 0.5
Discount (v) 0.99
Critic hidden dim 256
Critic learning rate 0.0003
Num layers 3
AVD Model
Embed dim 768
Vision backbone ViT-B/32
Timestep embed dim 512
Latent patch shape [2,2,2]
Num Transformer Layers 12
Num heads 12
Train steps 1000
Inference steps 50
Total steps 100,000
Global batch size 288
Learning rate le-4
Weight decay le-6

A.3 ENVIRONMENTS AND TASKS

A.3.1 ENVIRONMENT DETAILS

Fig. [ shows an example of each type of task we used to evaluate SWM. In Fig. [6] we provide
examples of out-of-distribution configurations used to evaluate the generalization capabilities of
SWM. More details about each environment and task are discussed below.

LangTable The LangTable environment has a control frequency of 10 Hz. For each task, we termi-
nate each episode after 120 environment steps. Our observation space is a single 180x 320 RGB
image of the table. The action space is xy delta poses, ranging from -.03 to .03. Our reach block
task is marked as a success if the peg made contact with the target block. The separate block task
is marked as a success if the L2 distance between the target block and the blocks to separate it from
is over .1 M. For pushing blocks together, the episode is marked as a success if the L2 distance
between the two target blocks is less than .075. The expert and noisy demonstrations used for our
offline dataset and expert diffusion dataset are collected on environment seeds 0-300, and we eval-
uate on seeds 6000-6050. For the SWM improvement, we use an action chunk of 8, a gradient
learning rate of 0.02, 10 planning iterations, and execute 4 out of the 16 predicted actions before
replanning. We use a gradient clipping of 1 before updating each action during planning.

OGBench We use the cube environment as the basis for our tasks. This environment has a control
frequency of 10Hz, and we terminate each episode after 200 steps. Our observation space is a single
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224 %244 RGB image. The action space is 5-dimensional, comprising of delta xyz and orientation,
and a gripper action. For the ReachCube task, we measure success as the gripper pads touching the
cube. For our cube stacking task, we initialize all block poses randomly and then define success
as the first cube being stacked on top of the second cube, with a gap between the top cube and
the robotic gripper. The expert and noisy demonstrations used for our offline dataset and expert
diffusion dataset are collected on environment seeds 0-300, and we evaluate on seeds 6000-6050.
For the SWM improvement, we use an action chunk of 8, a gradient learning rate of 0.2, 20 planning
iterations, and execute 4 out of the 16 predicted actions before replanning. We use gradient clipping
of 10 before updating each action during planning.

A.3.2 QUESTION-ANSWER DATASET CURATION

We precompute the future QA pairs for our offline dataset. For each state, we sample four different
action horizon lengths between 0 and 20, and generate a set of questions for each sampled horizon.
Tab. [6] shows the question types and an example of each question type on both the LangTable and
OGBench environments.

Table 6: Question types and examples for LangTable and OGBench

Type Example

LangTable

Block touching Is the red star touching the blue cube?

Peg to block Is the green cube next to the peg?

Block board position Is the red star in the center of the board?
Peg block relative direction Is the peg above the red cube block?

Block to block relative direction  Is the red star to the right of the blue cube?
Block move direction Did the red cube move left?

Block move Did the red star block move?

Peg move direction Did the robotic peg move downward?
Block to block closer Are the red star and blue cube closer together?
Peg to block closer Is the robotic peg closer to the red cube?
OGBench

Cube grasped Is the red cube grasped by the robot?
Gripper touching block Is the blue cube touching the robot gripper?
Block touching block Is the green cube touching the yellow cube?
Block on top of block Is the red cube on top of the blue cube?
Gripper closer to block Is the gripper closer to the green cube?
Block closer to block Is the red cube closer to the blue cube?

For each question type, we also use multiple variations in wording. For example, for block touching
questions, given two blocks {block1} and {block2}, we use:

* Is the {blockl} touching the {block2}?

* Are the {blockl} and {block2} blocks in contact with each other?

¢ Is there contact between the {block1} block and the {block2} block?
* Does the {block1} touch the {block2}?

¢ Is the {block1} block in physical contact with the {block2} block?

* Are the {block1} and {block2} blocks touching each other?

¢ Is the {block1} and {block2} directly touching?

* Do the {block1} and {block2} blocks meet?

A.3.3 TASK SPECIFICATION

For each task, we use a fixed set of questions and answers to specify the goals. All of our tasks are
single-subgoal tasks except the stack cube task, which has two goals. In order to create a multi-step
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task for LangTable, we use two subgoals of independent Block to Block tasks, and use the SWM to
pick the behavior policy and the subgoal to use. The questions, answers, and weights for all tasks
are in shown Tab. [71

Table 7: QA pairs used for task rewards

Task Question Weight Desired Answer
. Is the robotic peg touching the {target_block}? 0.8 Yes
Reaching LT Is the robotic peg closer to the {target_block}? 0.2 Yes
. Is the robotic gripper touching the {target_block}? 0.8 Yes
Reaching OG Is the robotic gripper closer to the {target_block }? 0.2 Yes
Is the robotic peg touching the {center_block}? 0.6 Yes
Separate Blocks 15,0 {avoid block} touching the {center block}? 0.4 No
Is the {first_block} touching the {second_block}? 0.8 Yes
Block to Block 4 1 "ihe {first_block} and the {second_block} 0.2 Yes
closer together?
Subgoal 1: Pick up the first cube
Cube Stacking  Is the robot grasping the {first_block}? 1.0 Yes
Subgoal 2: Stack the blocks
Is the {first_block} on top of the {second_block}? 0.6 Yes
Is the robot grasping the {first_block}? 0.4 Yes

A.4 ADDITIONAL EXPERIMENTS
A.5 FULL IMPROVEMENT RESULTS

We provide the full improvement results corresponding to Fig. [5]in the experiments section.

A.5.1 VISUALIZATION OF ATTENTION MAPS

We provide additional visualizations of the attention map. In Fig. [I0] we visualize the average
attention scores from language tokens to image tokens on a consecutive trajectory. We find that
different layers capture different semantic information. For example, layers 4 and 6 attend to the red
moon and the blue block, whereas later layers also attend to the peg, likely because of the need to
reason about the result of actions. In Fig. [IT we visualize the attention map in layer 4 on different
trajectories, showing that the layer consistently attends to the correct objects.

A.5.2 VISUALIZATION OF GRADIENT-BASED PLANNING

We visualize the gradient-based planning procedure in Fig. [0] As planning iteration progresses,
the candidate action sequence gradually extends to pushing the red pentagon to the blue moon,
approaching the optimal trajectory over successive gradient steps.

Figure 9: Visualization of gradient-based planning on the LangTable - Red Pentagon to Blue Moon
task. The initially proposed action sequence is on the left, and updates to this action sequence go
progressively to the right, approaching the optimal trajectory over successive gradient steps.
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Figure 10: Attention maps in different layers of SWM. Question: “Is the red moon touching the blue
block?”
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Figure 11: Attention maps for different trajectories. Question: “Is the red moon touching the blue
block?”



Table 8: Improvement Results. SWM model improvement results on planning tasks in LangTable and OG-
Bench on in-distribution scenes. Reported success rates over n = 50 seeds with 95% confidence intervals
(normal approximation). The top tasks are LangTable and the bottom tasks are OGBench.

Task Base Policy IDQL AVD SWM

Push Green Cube to Blue Moon 6% =+ 6.6 8% + 7.5 48% + 13.8 78% =+ 11.5
Push Red Moon to Green Star 18% =+ 10.6 8% + 7.5 44% 4+ 13.8 80% +11.1
Push Red Pentagon to Blue Moon 14% + 9.6 12% +9.0  38% +£13.5 80% =+ 11.1
Push Yellow Pentagon to Red Moon  18% £+ 10.6 8% +7.5 34% +13.1 86% +9.6
Push Yellow Star to Blue Cube 16% 4+ 102 10% £ 83 62% +13.5 84% + 10.2
Stack Blue Cube on Yellow Cube 52% + 13.8 8% + 7.5 50% 4+ 13.9 82% + 10.6
Stack Blue Cube on Green Cube 44% £+ 13.8 16% +=10.2 46% +13.8 84% =+ 10.2
Stack Yellow Cube on Red Cube 40% +13.6 24% +11.8 44% +13.8 62% + 13.5

A.5.3 PLANNING EFFICIENCY

We measure the effective environment Hz of AVD, MPPI, and our gradient-based method in
LangTable. For our comparison, the number of MPPI samples and planning steps is fixed to the
same number used in the AVD baseline, which is eight iterations with 16 samples. For gradient-
based planning, we use the same parameters as those in the LangTable, specifically 10 iterations
on a single candidate trajectory. For all three methods, we use a reward sub-chunk size of 8 and a

horizon of 16.

Table 9: Planning speed comparison across different methods

Method Time per action chunk (Seconds)
AVD 676.41

MPPI 4.48
Gradient-based 1.56
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